Yielding Elastic Tethers Stabilize Robust Cell Adhesion

نویسندگان

  • Matt J. Whitfield
  • Jonathon P. Luo
  • Wendy E. Thomas
چکیده

Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visco-elastic membrane tethers extracted from Escherichia coli by optical tweezers.

Tethers were created between a living Escherichia coli bacterium and a bead by unspecifically attaching the bead to the outer membrane and pulling it away using optical tweezers. Upon release, the bead returned to the bacterium, thus showing the existence of an elastic tether between the bead and the bacterium. These tethers can be tens of microns long, several times the bacterial length. Using...

متن کامل

Elongated Membrane Tethers, Individually Anchored by High Affinity α4β1/VCAM-1 Complexes, Are the Quantal Units of Monocyte Arrests

The α4β1 integrin facilitates both monocyte rolling and adhesion to the vascular endothelium and is physiologically activated by monocyte chemoattractant protein (MCP-1). The current study investigated the initial events in the adhesion of THP-1 cells to immobilized Vascular Cell Adhesion Molecule 1 (VCAM-1). Using AFM force measurements, cell adhesion was shown to be mediated by two population...

متن کامل

Elastic tethers between separating anaphase chromosomes in crane-fly spermatocytes coordinate chromosome movements to the two poles.

Separating anaphase chromosomes in crane-fly spermatocytes are connected by elastic tethers, as originally described by LaFountain et al. (2002): telomere-containing arm fragments severed from the arms move backwards to the partner telomeres. We have tested whether the tethers coordinate the movements of separating partner chromosomes. In other cell types anaphase chromosomes move faster, tempo...

متن کامل

Elastic 'tethers' connect separating anaphase chromosomes in a broad range of animal cells.

We describe the general occurrence in animal cells of elastic components ("tethers") that connect individual chromosomes moving to opposite poles during anaphase. Tethers, originally described in crane-fly spermatocytes, exert force on chromosome arms opposite to the direction the anaphase chromosomes move. We show that they exist in a broad range of animal cells. Thus tethers are previously un...

متن کامل

How things get stuck: kinetics, elastohydrodynamics, and soft adhesion.

We consider the sticking of a fluid-immersed colloidal particle with a substrate coated by polymeric tethers, a model for soft, wet adhesion in many natural and artificial systems. Our theory accounts for the kinetics of binding, the elasticity of the tethers, and the hydrodynamics of fluid drainage between the colloid and the substrate, characterized by three dimensionless parameters: the rati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014